

WP 5 – TEXTILE-LIKE MATERIALS FROM A PAPER MACHINE

ENTIS slutmöte - 2018-08-23

Mikael Magnusson

Research Institutes of Sweden

Bioeconomy Papermaking & Packaging

WP 5 – Textile-like materials from a paper machine

Textile-like materials from a paper machine

- Materials of today that are perceived as textile-like typically have two or more of a certain set of properties.
 - Moreover they are typically permanent and not recycled
- What about materials produced in a sustainable way, much faster and cheaper and with typically one or more of a certain set of properties?

WP5 - Consortium

Institutes	Suppliers & Producers	Needs Owners
Innventia Swerea	Domsjö Billerud Korsnäs	Guringo (ultra-fast fashion)
	Fibre-X (pilot infrastructure) Ricoh (printing)	Ecophon (interior design & sound insulation)
	OrganoClick (functional chemisty)	Trifilon (multi-layer laminates)

Material Hub + Activities

Material Hub

Market Analysis
Benchmarking
Fibre and additive screening
Process development
Conversion functionalisation and printing
Demonstration

Paper Production and Modification BillerudKorsnäs (+ Innventia)

Pulp dryer for textile-like materials - Domsjö Domsjö (+ Innventia)

Development of binders for textile-like materials OrganoClick (+ Innventia)

- A number of target sectors were identified
 - Basis of volume and growth
 - Mobiltech (Acoustic insulation e.g.)
 - Hometech (Cushioning, insulation, linen, draperies, furniture, apparel e.g.)
 - Medtech (drapes, bedding, gowns e.g.)
 - Clothtech (Ultra fast fashion)
- The application of the new material has a potential for both:
 - competing with existing products
 - With renewable, compostable and sustainable material
 - With cheaper once-or-twice use of products that need not be permanent
 - or be completely new applications
 - With functions such as sealability, thermo formability, softness, absorption or insulation

- Workshop Textile-like material from the forest
 - Invited participants from: fashion, construction, design, and medtech
 - How do different industries perceive the novel materials and their use?
 - "The future holds many exciting opportunities"

 Comparisons between selected benchmark products/materials (from identified market segments)

- Target properties were defined in terms of:
 - Strength, stretch, drapeability, softness, smoothness etc.
- Property space for WP5 materials defined and compared to existing materials

Raw materials from agro and forest sector

Raw materials from agro and forest sector

- Evaluation of different functional fibres and chemical additives that commingled with forest-based papermaking fibres give desired textile-like material properties. $\rightarrow \underline{\text{Recipes}}$
- Fibre screening of renewable and compostable raw materials

Material	Fibres	Processes	Strength mechanism	Production speed
Nonwoven	 Synthetic cellulose fibres PP PE PLA Agro fibres Wood pulp fibres 	Various: • spun lace • wet laid • dry laid	 Fibre friction/interlocking Added adhesive chemicals Heat 	~500 m/min
Paper	Short Wood fibres	Papermaking (similar to wet laid)	Self-binding	~1800 m/min
Textiles	Continous or long yarn of natural (cotton, wool or other animal hairs) or synthetic fibres	WeavingCrochetingKnitting	Typically fibre interlocking or friction (felt)	15 m/min
Non-paper?	Wood fibres and synthetic fibres	Papermaking (similar to wet laid)	Self-binding	1800 m/min?

Fibre and Additive Screening Optimizing for strength and softness

RI SE

Hand feel and softness • In general, a hand feel value above 50 are precepted as textile-like 50-Cloth, 56-linen, 75 cotton shirt Softness at 20 are suitable as table cloth wh Dissolving (50%) and PLA/Lyocell and CMF Strength vs. Handfeel chreak #Finaka.ad #Brom Luccell #4mm · Addition of 5% CMF worsens the HF by 16-17% independently PLA fibres or PLA/Lyocell mix 42% to 81% worse TS7 with the CMF addition · The Hand feel is independent on the type of synthetic fibre The TS7 is slightly better when 100% PLA is used instead of Lyoc 50% PLA is comparable to 25/25% PLA/Lyocell Influence of PLA and Lyocell · PLA/DP mix yields better softness than Lyocell · Even with PLA of 50% (yields Hand feel and softness) 50% SW gives a much too rough TS7 60 Replacing SW with DP greatly improves the HF and TS7 Fibre and Additive Screening: 40,0 60.0 In conclusion 55,0 35,0 g 50,0 30,0 Pressing should be low to obtain any HF and softness values (0.5 bar at the lab scale) 9 45,0 25.0 J 40,0 • -40% DP Longer fibres contribute to both strength and stiffness PLA addition significantly improves the HF and softness and the 6mm Lyocell content may be used to increase the strength further • Replacing SW with DP greatly improves the HF and TS7 but low amounts of SW are needed to obtain enough strength Retention of 5% CMF on Lyocell fibres improves consolidation but improves little to the strength • 10 wt%(of the sheet) CMF significantly reduces HF and softness Biobinders may improve strength without a significant loss of HF and softness

Fibre and Additive Screening Optimizing for strength and softness

- The ingoing raw material could be tailored to balance the softness to the strength needed for the application
- A completely biobased, renewable and compostable multimaterial could achieve the set target in terms of both softness and strength even for relatively thin qualities (100 g/m²)

Pulp preparation

Pulp preparation

Further possible improvements:

- Refiner fillings could be designed for improved softness (through introduction of micro compressions and kinks) and without significant risk of flocculation of the pulp suspension
 - Especially if treated with charged polymers in the paper making process

Process development and the paper machine toolbox

Process development

- Developing/optimizing textile-like material production techniques on the paper machine.
- Going from lab to semi-pilot to full scale pilot production

Process development

- Full scale pilot production could be handled continuously as well as in batch-wise productions without risks of contamination of the subsequent product
- Specially designed head box, on line measurements and foam forming was used to introduce 8mm long fibres into the paper making process
 8mm fibres

One base material to rule them all

- We work with the concept of a base material suitable for an array of applications
 - Readily convertible to different products
- Either when a new material of a new application OR when an alternative material to an existing application is introduced, the demand is typically low
 - The production rates of a paper machine need to fill several (new) product demands to be cost efficient
 - Each individual annual demand is typically too low on its own

One base material to rule them all

- The base material itself is
 - Twice as flushable as today's wipes
 - Renewable, compostable
 - Sealable, absorbent, warm to the touch
 - Softer than tissue paper but thrice as strong
- Various converting applications and functionalization chemistry are applicable to adapt the base material to textile-like material products.
 - Microcreping for stretch and drapability
 - Weldable for improved strength without loss of textile properties
 - Coating for added functionality
 - Hydrophobic
 - Flame retardant
 - Coloring and Printable
 - Curable for improvement of strength

Demonstrating the potential

- A number of different demonstrators were produced to show the various possibilities
 - A soft, printed curtain
 - A sealed, colored and unique patterned bag
 - An ultra fast fashion clothing
 - A sound absorbent for interior design
 - A complex shaped package detail

RI. SE

THANK YOU!

Mikael Magnusson

mikael.magnusson@ri.se

+46 76 876 71 92

Research Institutes of Sweden

DIVISION Bioeconomy SECTION Paper Technology

